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ABSTRACT
The present paper deals with the Stochastic Behaviour of a two unit warm standby system with
preparation time for replacement, in which after each warm standby unit, the repaired unit is sent for
“final trial” with preparation time before sending it for operation. Using regenerative point technique
with Markov renewal process, the some of the reliability.
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INTRODUCTION

Several authors including [............cc. oo oe...] working in the field of reliability
have analysed various engineering systems by assuming different sets of
assumptions. Most of them assumed that after the failure of an operative
unit, its repair starts immediately and it continues till its completion
without considering the time factor.

But in the real practical situation it is quite reasonable to fix some upper
limit of time for completing the repair. If the repairman is able to repair the
failed unit within this time period then it is OK. Otherwise the preparation
for replacement starts immediately. Once the preparation process is
completed the failed unit is sent for replacement by the new one.

Keeping the above view, we in the present chapter analysed a two unit warm
standby system with preparation time for replacement. Using regenerative
point technique with Markov renewal process, the following reliability
characteristics of interest are obtained.

1. Transition and steady state transition probabilities

2. Mean Sojourn times in various states

. Mean time to system failure (MTSF)

. Point wise and Steady state availability of the system

. Expected Busy period of the repairman in (0,t]

. Expected number of visits by the repairman in (0,t]

U1 A W

MODEL DESCRIPTION AND ASSUMPTIONS

1. The system consists of two non-identical units in which first unit is
treated as priority and another as ordinary.

2. Initially first unit is considered to be operative and the second as warm
standby.
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3. First unit gets priority fore both operation and repair.

4. After failure the unit is sent for repair immediately provided the repair
facility is available but in case of first (priority) unit an amount of time
has been fixed for repair facility known as “allowed time”. If the repair
facility is able to complete the repair of the failed unit within this
allowed time then it is 0.K. otherwise preparation for replacement
starts. The repair facility takes a random amount of time in preparation
to start replacement.

. In replacement the failed unit is to be replaced by the new one.

. The failure time distributions of both the units and preparation time to
start replacement are exponential with different parameters while the
repair and replacement time distributions are general.
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Fig. 1: The transitions between the various states are shown in Fig
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NOTATION AND SYMBOLS

No : Normal unit kept as operative

Nws : Normal unit kept as warm standby

F. : Failed unit under repair

Fr : Repair of the failed unit is continued from earlier state
Fuwr : Failed unit is waiting for repair

Fp : Failed unit under preparation to start replacement

Fp : Preparation is continued form the earlier state

Frep : Failed unit under replacement

Frer : Replacement of the failed unit is continued from earlierstate
o1 : Constant failure rate of priority unit

o2 : Constant failure rate of ordinary unit

B : Constant failure rate of warm standby unit

Y : Constant rate of completing preparation

f(.), F(.) : pdf and cdf of time to complete repair of failed priority unit
g(.), G(.): pdfand cdf of time to complete repair of failed ordinary unit
h(.), H(.) : pdf and cdf of time to complete replacement of the failed unit
by the new one

mi : Mean time for completing repair
m; : Mean time for completing replacement

Using the above notation and symbols the possible states of the
system are

Up States

So = (No, Nws) S1 = (Fr, No) S2 = (No, Fi)
S3 = (Fp, No) S4 = (Frep, No)

Down States

Ss = (FREP; er) Se = (Fr; er) S7= (Fp; Fr)
Sg = (Frep; er) So = (FR, er)

TRANSITION PROBABILITIES
Let To (=0), T1,T2,.... be the epochs at which the system enters the states S;
€ E. Let X, denotes the state entered at epoch Ts.1 i.e. just after the
transition of T,. Then {T, X.} constitutes a Markov-renewal process with
state space E and

Qik(t) = Pr[Xn+1 = Sk, Tns1 - Tn £t | Xn = Si] e (1)
is semi Markov-Kernal over E. The stochastic matrix of the embedded
Markov chain is

P = Pik = lim Qik (t) = Q(OO) (2)

t‘)tx)

By simple probabilistic consideration, the non-zero elements of Qix(t) are:

a
QOl(t) = Ojt ale_(a1+a2)u du = —1[1 _ e_(a1+a2)t]
o+ 0,
t a0 o, -
Qo2(t) = o] aze-(“1+%2dudu = —2[1 - e-(*1+%2)]
o+ 0,
Quo(®) = ol e2 f(w) du Qus(t) = of' Be-*+*21u F (u) du

Qis(t) = of aze-(P+%2)u F(u) du
QO)12(t) = of" e-Puf(u) du - o' e-*+*23u F (u) du

9 : dF) g o= fAF(X)
Q17(t) = of* Be-Pudu F (u )j Fu) - oft ey duF(u){W
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Qz0(t) = of" e-“1ug(u) du Qz6(t) = of" are-1v G (u) du
Qs4(t) = off ye-("+*2)u du = v [1- e ("+%*2)t]
Y+,
Q37(t) = of aze-("+*2u du = %2 [1- e ("+*2)]
Y+,
Q4o(t) = o] e-*2uh(u) du Qus(t) = o] aze-*2¢ H(u) du
t
Q5)42(t) = o) aze-*2u du H (u) jcﬂ-l(x) Qes2(t) = of" e-Puf(u) du
L H(u)
Qe7(t) = of* Be-"u F (u) du Qr3(t) = of e g(u) du
Q7s(t) = of* ye's G (u) du Qs2(t) = o h(u) du

e (3-21)
Taking limit as t — o, the steady state transition pj; can be obtained from
(3-21) . Thus

pix = lim Qix(t) e (22)
t‘)w

o o

pOl = —1 p02 = —2
oy +a, Oy + 0y
pio = f*(B+az) pi3 = P [1-f*(B+az)]
B+a,

P19 = [1-f(B+az)]p™i2 = *(B) - F*(B+az)

+aL,
p®i7 =1 - *(B) - P [1-f*(B+az)] p2o = g*(a1)

oy
_ * _ Y
p26 =1 - g*(a1) P34 =
Y+d,

o

p37 = 2 pso = h*(az)
Y+d,

pas =1 - h*(az) = pBlaz Pe2 = £*(P)
pe7 =1 - f*(B) p73 = g*(y)
p78 = 1- g*(’y) psz = 1 (23-40)

From the above probabilities the following relation can be easily
verifies as;

pot + poz = 1 p1o + p13 + p1o=1=p1o+pi3+ p®i2+ py7

P34 + p37=1 pao + pas =1 = pao + pBlsy

pPez + ps7 = 1 p73 + prs=1

pez = 1 e (41-47)

Mean Sojourn times

The mean time taken by the system in a particular state Si before
transiting to any other state is known as mean sojourn time and is defined
as

wi=of P[T>t]dt .. (48)
Where T is the time of stay in state S; by the system.
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To calculate mean sojourn time p; in state S;, we assume that so long as
the system is in state S;, it will not transit to any other state. Therefore;

1 1
o= —— H1 = [1-f*(B+az)]
o, +0o, B+a,
he= —[1-gtad]  me s —
ay Y+OLZ
1 1
e = —[1 - h*(a2)] me = —[1 - £*(B)]
o, B
1 o —
H7 = ;[1-g*(v)] we = ol H(t) dt = us
wo = ol F (1) dt e (49-57)

CONTRIBUTION TO MEAN SOJOURN TIME
For the contribution to mean sojourn time in state SieE and non-
regenerative state occurs, before transiting to SjeE, i.e.,

ms; = of t.q(t) dt = -q"*(0) SR €13
Therefore,
* a
Mmo1 = of t.are (*1+%2t dt = —12
(OH +a2)
* a
mMmo2 = of t.oze-(“1+%2)t dt = —22
(OH +a2)

mio = o] t.e-(P+%2)e f(t) dt

mus = of” t.pe- B+t F (t) dt

mio = o t.aze-(P+%2)t F (t) dt

m® i, = of tee-Prf(t) dt-of t.e-®+*2)t F(t) dt

F(x © F(x
m(9)q7 = oj t.pe- Prdt F(t) jd ()) o] t.e-(B+og)t th(t)jd ())
mzo = 0_[ t.e-* itg(t) dt Mze = 0_[ t.ore-%1t G (t) dt
mss = ij t_ye_(Y+0L2)t dt = LZ

(y+0c2)
ms7 = o] toge(+%2tdt = L[l - e-("+%2)0]
(y+0c2)
mao = o t.e-%2th(t) dt mas = o] t.aze-%2t H(t) dt
H(x
m) s, = of t.oze %zt dtH(t)jd ()
H(u)
mez = o t.e-Prf(t) dt me7 = o t.pe-Pt F(t) dt
my3 = 0_[00 t.e-"t g(t) dt myg = 0_[00 t.ye-yt G (t) dt
ms2 = o] t.h(t) dt erverrnsinnnn(59-77)
By the above expressions, it can be easily verified that
Mo + Moz = Uo mio + M13 + M19 = U1

Mo+ Mi3 + M1 + MmOy = of t.f(t) dt = m:
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mzo + M2 = U2 ms4 + M37 = U3
Mg + Mas5 = g myo + MGy = ojw t.h(t) dt = m;
Me2 + Me7 = e my3 + M7g = Wy v (78-86)

MEAN TIME TO SYSTEM FAILURE (MTSF)

To obtain the distribution function mi(t) of the time to system failure with
starting state So.

mo(t) = Qo1(t)$m1(t) + Qoz(t)$m2(t)

m1(t) = Quo(t)$mo(t) + Qus(t)$ms(t) + QM 12(t)$m2(t) + QI 17(t)

m2(t) = Qzo(t)$mo(t) + Q26(t)

n3(t) = Qsa(t)$ma(t) + Qs7(t)

74(t) = Qao(t)$mo(t) + Qas(t)$ms(t) e (87-91)
Taking Laplace Stieltjes transform of relations (87-91), we get

Zo(s) = Qor(s). 71(s) + Quals). 7a(s)

71(5) = Q10(5)- Ta(s) + Q1a(5). Ta(s) + OC)1a(s). Ta(s) + Q)1 (s)
72(5) = Q20(s)- Tols) + Oze(s)

73(5) = Qsa(s)- Tals) + Qsr(5)

7[4(5) = Q40(S).7Z'0(S) + Q42(S).7Z'2(S) (92-96)

~

and solving the above equations (92-96) for mo(s) by omitting the

argument ‘s’ for brevity, we get

To(s) =Ni(s)/ Da(s) (97)

where

Ni(s) = Qo1 Q17+ Q01013037+ Q01012026 + Q0101303400642 026

+Q02026 (98)

and

Di(s)=1- Q01 Q10- Q0101303406142 020 - Q01012020 - Q02020 -

Q01013034 Qo e (99)
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~

By taking the limit s—0 in equation (97), one gets 7 o(0) = 1, which

~

implies that 7 ¢(t) is a proper distribution function. Therefore, mean time

to system failure when the initial state is Sy, is

d D’1(0) - N'1(0)
E(T) =- — mo(s)]s=0 = = N1/D: e (100)
ds D1(0)
where
Ni = po+ mipo1 + M2po1P13P34 + Po1P13us + Uz2(Poz + po1p®i12 + po1p13P34)
e (101)
and
D1 =1 - poip1o- po1P13p34p(3az = po1p(®12p20 = PozP20 — Po1P13P34P4o
e (102)
AVAILABILITY ANALYSIS

System availability is defined as

Ai(t) = Pr[Starting from state S; the system is available at epoch t without
passing through any regenerative state] and

Mi(t) = Pr[Starting from up state S; the system remains up till epoch
t without passing through any regenerative up state]

Thus,

Mo(t) = e-("1+%2)t Mi(t) = e-(P+*2)t F (¢)

M2 (t) = e-*1td. G (t) M;(t) = e-(P+%2)t

M4(t) = e-%2t H(t) rerneen(103-107)

Now, obtaining Ai(t) by using elementary probability argument;
Ao(t) = Mo(t) + qo1(t)©A1(t) + qo2(t)©A2(t)
A1(t) = M1(t) + q10(t)©Ao(t) + q(12(t)©A2(t) + q13(t)©A3(t)

+ q(917(t)OA7(t)
Az(t) = M2(t) + q20(t)©Ao(t) + q26(t)©As(t)
As(t) = Ms(t) + q34(t)©OA4(t) + q37(t)©A(t)
Aq(t) = Ma(t) + qao(t)©Ao(t) + q5)42(t) ©A(t)
As(t) = qe2(t)©A2(t) + q27(t)©A7(t)  As(t) = q73(t)©A3(t) + q78(t) ©As(t)
As(t) = qs2(t)©A2 (1) rren . (108-115)
Taking Laplace transform of above equation (108-115), we get,
A*o(s) = M*o(s) + q*o01(s).A*1(s) + g*o2(s).A*2(s)
A*1(s) = M*1(s) + q*10(s).A%0(s) + q*(12(s).A*2(s) + q*13(s).A*3(s)

+ q*(917(s).A%7(s)
A*3(s) = M*2(s) + q*20(s).A%o(s) + q*26(s).A%6(s)
A*3(s) = M*3(s) + q*34(s).A*4(s) + q*37(s).A*7(s)
A*4(s) = M*4(s) + q*40(s).A%o(s) + q*(5)a2(s).A*2(s)
A*s(s) = q*62(s).A*2(s) + q*27(s).A%7(s)
A*7(s) = q*73(s).A*3(s) + q*78(s).A%s(s)
A*g(s) = q*sz(s).A*2(s) e (116-123)
Now, solving the equations (116-123) for pointwise availability A*o(s), by
omitting the arguments ‘s’ for brevity, one gets

Nz(S)

A*o (S) =
D2(s) vevren e eeeennn (124)
Where
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N2(s) = [M*o + q*o1M™1 + q*01q*13M™3 + q*019*13q*34M*4]
J(1 - g*269%62) (1 - q*379*73) - 9*269%67(q*789*s2
+ q*739%349*5)42)] + M*2[(1 - 9*379*73) (9% 02 + q*019* (912
+ q%019%139%349*)42) + (q*78q%s2 + qQ*73q*349*(5)42)
(g*01q* 17 + q*019*13q™*37)] + [M*3q*73 + M*4q*73q™*34]
dg*26q%67(g 02 + %019 (912 + q*019*139*349*(5)42)
+ (1 - q*26q*62)(q*01q*(9)17 + q*01q*13q*37)] (125)
and
D2(s) =[1-9g*%19*10 - 9%019*139%349*40][(1 - q*269*62) (1 - q*379%*73)
- 9%269%67(q*789%s2 + q*739%34q*(5)42)] - q*20[(1 - q*379%*73)
(g%02 + q*019* (P12 + q*019*139*349*5a2)] - q*739*34q* 40
a%269%67(q%02 + q*019* (V)12 + q*019*139%34q*(5)42)
+ (1 - q*26q*62)(q*01q*(9)17 + q*01q*13q*37)] (126)
By taking the limit s—0 in the relation (126), one gets the value of D,(0) =
0, therefore the steady state availability of the system when it starts
operations from Sy is
Ao(OO) =lim Ao(t) = lim S. Ao*(S) = Nz(O)/D'z(O) = Nz/Dz e arraaas (127)

t—>® s70

where in terms of

M*0(0) = po M*1(0) = pa M*2(0) = p2
M*3(0) = us M*4(0) = U4 (128-132)
We have,

N = [Mo + Po1U1 + Po1p1auz + po1p13p34u4][(1 - p26p62)(1 - p37p73)
- p26Ps7(pP7s + P73p34p®laz)] + 12[(1 - p37p73)(Poz + po1p12
+ po1p13P34pBlaz) + (prspsz + P73p34Ppaz)(porp (P17
+ po1 P13 p37)] + [H3p73 + Hap73P34][P26P67(Poz + Po1p(Diz
+ po1p13P34pBlaz) + (1 - p26Pe2)(Po1p(®17 + po1pP13P37)

v (133)
and
D; = [Mo + po1mi + Po1P133 + po1p13p34u4][(1 - p26p62)(1 - p37p73)
- P26ps7(p7s + P73p34p(Plaz)] + (12 + pzelte)[(1 — p37p73)
.(poz + po1p®12 - po1p13p34p(®laz) + pPo1P17P78 + Po1P13P37P78
+ po1p®17p73p34pBlaz] + H7[p26Ps7(Poz + Po1pP12
+ po1p13P34pBlaz) + (1 - p26Pe2)(Po1p(®17 + po1pP13P37)
e (134)

BUSY PERIOD ANANLYSIS

Let us define W;(t) as the probability that the system 1is under
repair/replacement by repair facility in state S; ¢ E at time t without
transiting to any regenerative state. Therefore

Wi(t) = F(t) = We(t) Wa(t) = e-“1t G(t)
Ws(t) = e-(7+%2) Wa(t) = H(t) = Ws(t)
W (t) = et G(t) e (135-139)

(i) Now, let Bi(t) is the probability that the system is under repair by
repair facility at time t, Thus the following recursive relations among
Bi(t)’s can be obtained as ;
Bo(t) = qo1(t)©B1(t) + qoz(t)©B:(t)
Bi(t) = Wi(t) + qio(t)©Bo(t) + q(912(t)©B2(t) + q13(t)©B3(t)
+ q9)17(t)©B7(t)
Ba(t) = W2(t) + q20(t)©Bo(t) + q26(t) ©Bs(t)
Bs(t) = W3(t) + q34(t)©B4(t) + q37(t)©By(t)
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B4(t) = q40(t)©Bo(t) + q(5)42(t)©B2(t)
Bs(t) = We(t) + qe2(t)©B2(t) + q27(t)©B7(t)
B7(t) = We(t) + q73(t)©Bs(t) + q78(t)©Bs(t)
Bs(t) = qs2(t)©B2(t) v (140-147)
Taking Laplace Transform of above equation (140-147), we get,
B*o(s) = q*01(s).B*1(s) + q*02(s).B*2(s)
B*1(s) = W*1(s) + q*10(s).B*o(s) + q*(12(s).B*2(s) + q*13(s).B*3(s)
+ q*(917(s).B*7(s)
B*2(s) = W*2(s) + q*20(s).B*o(s) + q*26(s).B*s(s)
B*3(s) = W*3(s) + q*s4(s).B*4(s) + q*37(s).B*7(s)
B*4(s) = q*40(s).B*o(s) + q*(5)42(s).B*2(s)
B*s(s) = W*s(s) + q*62(s).B*2(s) + q*27(s).B*7(s)
B*7(s) = W*7(s) + q*73(s).B*3(s) + q*7s(s).B*s(s)
B*s(s) = q*s2(s).B*2(s) o (148-155)
and solving equations (148-155) for B*y(s), by omitting the argument ‘s’
for brevity we get;
B*o(s) = N3(s)/Ds(s) e (156)
Where D3(s) is same as Dz(s) in (126) and
N3(s) = [W*1 + q*01q*13W*3][(1 - 9*269%62) (1 - 9*379%73)
- 9%269%67(q*789%s2 + qQ*73Q*34q*(5)42)] + (W*2 + q*26W™*s)
J(g%02 + q*019*(12 + 9*019*139*349*5)42) (1 - q*37q*73)
+ (q*789*s2 + 9*739%349*(5)42)(q*01q* ()17 + q*019*139*37)]
+ [W*7 + q*73W*3][q*269%67(q%02 + q*01q* (912
+ q%019%139%349*)42) + (1 - q*269*62)(q*01q* (17
+ q*019*139*37)] verenennn(157)
In this steady state, the fraction of time for which the repair facility is
busy in repair is given by
Bo = lim Bo(t) = lim s B*(s) = N5(0)/D’3(0) = N5/Ds v (158)

t ™ ® s 0

where D3 is same as D; in (134) and

N3 = [m1 + poip13us][(1 - p26Pe2 — pP37P73)

- P26Ps7(pP7spsz + P73pP34plaz)] + (K2 + p2emi)

J(poz + po1p®12 + po1p13p34p(Plaz) (1 - p37p73)

+ (p7spsz + pP73p34Ppaz) (Po1p (P17 + po1p13P37)]

+ [y + praps][p26Pe7(Poz + Po1p(®12 + po1p13p34p(Plaz)

+ (1 - p26pe2)(Po1p(®17 + po1P13P37)] weennn.(159)
(ii) Similarly let Ri(t) is the probability that the system is under
replacement by repair facility at time t, Thus the following recursive
relations among Ri(t)’s can be obtained as ;
Ro(t) = qo1(t)OR1(t) + qoz2(t)©OR2(t)
R1(t) = q10(t)©ORo(t) + g 12(t)OR2(t) + q13(t)©OR3(t) + q()17(t)OR7(t)
Rz(t) = q20(t)ORo(t) + q26(t)©ORe(t)
R3(t) = q34(t)OR4(t) + q37(t)OR7(t)
Ra(t) = Wa(t) + qao(t)ORo(t) + q5)42(t) OR2(t)
Re(t) = qe2(t)OR2(t) + q27(t)OR7(t)
R7(t) = q73(t)OR3(t) + q78(t)©ORs(t)
Rg(t) = Wg(t) + qu(t)©R2(t) (160-167)
Taking Laplace Transform of above equation (160-167), we get,
R*o(s) = q*01(s).R*1(s) + q*02(s).R*z2(s)
R*1(s) = q*10(s).R*o(s) + q*12(s).R*2(s) + q*13(s).R*3(s)

+ q*M17(s).R*7(s)

R*2(s) = q*20(s).R*o(s) + q*26(s).R*s(s)

Annalsg of RNatural Sciences ~86 ~ Vol 4(1): March 2018



Kumar & Singh

R*3(s) = q*34(s).R*4(s) + q*37(s).R*7(s)
R*4(s) = W*4(s) + q*40(s).R*o(s) + q*(5)s2(s).R*2(s)
R*6(s) = q*62(s).R*2(s) + q*27(s).R*7(s)
R*7(s) = q*73(s).R*3(s) + q*7s(s).R*s(s)
R*B(S) = W*B(S) + q*gz(S).R*z(S) (168-175)
and solving equations (168-175) for R*y(s), by omitting the argument ‘s’
for brevity we get;
R*0(s) = N4(s)/Du(s) e (176)
Where D4(s) is same as Dz(s) in (126) and
N4(s) = q*019*13q*34W*4[(1 - q*379™73) (1 - q*269%62)

- q*269%679%78 - Q% 269™679*73Q%34q*(5)42)]

+ [q*78W*s + q*73q*32aW*4][q*269%67(q%02 + q*01q* (12

+ q%019%139%349*)42) + (1 - q*269*62)(q*01q* (D17

+ q*019*139*37)] ene e (177)
In this steady state, the fraction of time for which the repair facility is
busy in repair is given by
Ro = lim Ro(t) = lim s R*(s) = N4(0)/D’4(0) = Na/Ds  eoeerern. (178)

t ™ ® s 0

where D4 is same as D, in (134) and
N4 = po1p13p34mz[(1 - p37p73) (1 - p26p62) - P26P67P78
- P26P67P73P34P5)a2) + m2[p7s + p73P34][P26Pe7(Poz + Po1p(Di2

+ po1p13P34Plaz) + (1 - p26pe2) (Po1p(®17 + po1P13pP37)]
e (179)

EXPECTED NUMBER OF VISITS BY THE REPAIR FACILITY

Let we define, Vi(t) as the expected number of visits by the repair facility
in (0,t] given that the system initially started from regenerative state S; at
t=0. Then following recurrence relations among Vi(t)‘s can be obtained as;
Vo(t) = Qo1 (t)$[1 + V()] + Qoz2(t)$[1 + V2(t)]

Vi(t) = Quo(t)$Vo(t) + QM 12(1)$V2(t) + Qu3(t)$Vs(t) + Q17(t)$V7(1)

V2 (t) = Q20(t)$Vo(t) + Qz6(t)$Vs(t)

V3(t) = Q34(t)$Va(t) + Qs7(t)$V7(1)

Va(t) = Qso(t)$Vo(t) + Q42 (1) $V2(t)

Ve(t) = Qe2(t)$V2(t) + Q27(t)$V7(1)

V7(t) = Q73(t)$Vs(t) + Qrs(t)$Vs(t)

Vg(t) = Qs2(t)$V2(t) v (180-187)
Taking Laplace stieltjes transform of the above equations (180-187) we
get

I;0(5) = ém(S)-[l + I;1(3)] + éoz(S)-[l + I;2(3)]

I;1(5) = Qlo(S)-;o(S) + Q(9)12(s).1;2(s) + le(S)-;s(S) + Q(9)17(S)-;7(S)
I;2(5) = on(S)-;o(S) + Qza(S)-;a(S)

I;3(5) = Q34(S)-;4(S) + Q37(S)-;7(S)

Va(s) = Qao(s). Vo(s) + QBuz2(s).V 2(s)
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Ve(s) = Qe2(s).V2(s) + Qe7(s). V' 7(s)
V7(s) = Q73(s).V5(s) + Qrs(s). Vs(s)

;8(5) = ng(S).;z(S) (188-195)

~

and solving the equations (188-195) for V(s) by omitting the argument

‘s’ for brevity is

T;o(s) = Ns(s)/Ds(s) v (196)
Where

Ns(s) = (Qo1+ Qo2){(1 - Q26062)(1- O37073)

- 026067(078 082 + Q73034 006)42)} eenennnn(197)

and

Ds(s) = [1- Qo1 Q1o - Qa1 O13 Q4 Qual[(1 - 026 Qsa)(1 - 037 073)
- 026 067( 070 sz + 0730330 ©1aa)] - Oual(1 - Q27 073)
(Qoz + 0010 D1z + 0010130150 Gla)] - Ora Qs Qo
T 02 0ar(Quz + 0010 iz + 01 013 024 0 9)
+ (1= 02606)(0010 @17+ Oor O13037)] e (198)

In steady state the number of visit per unit of time when the system starts
after entrance into state Sy is ;

Vo =lim [Vo(t)/t] =lim s Vo(S) = N5/D5 (199)
t ™ ® s™0

where Dsis same as D, in (134) and

Ns = (1 - p26ps2) (1 - p37p73) - P26P67P72 - P26P67P73P34Pp (P42 e (200)
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